Leveraging local neighborhood topology for large scale person re-identification
نویسندگان
چکیده
In this paper we describe a semi-supervised approach to person re-identification that combines discriminative models of person identity with a Conditional Random Field (CRF) to exploit the local manifold approximation induced by the nearest neighbor graph in feature space. The linear discriminative models learned on few gallery images provides coarse separation of probe images into identities, while a graph topology defined by distances between all person images in feature space leverages local support for label propagation in the CRF. We evaluate our approach using multiple scenarios on several publicly available datasets, where the number of identities varies from 28 to 191 and the number of images ranges between 1003 and 36 171. We demonstrate that the discriminative model and the CRF are complementary and that the combination of both leads to significant improvement over state-of-the-art approaches. We further demonstrate how the performance of our approach improves with increasing test data and also with increasing amounts of additional unlabeled data.
منابع مشابه
Joint Person Re-identification and Camera Network Topology Inference in Multiple Cameras
Person re-identification is the task of recognizing or identifying a person across multiple views in multi-camera networks. Although there has been much progress in person reidentification, person re-identification in large-scale multi-camera networks still remains a challenging task because of the large spatio-temporal uncertainty and high complexity due to a large number of cameras and people...
متن کاملDistance-based Camera Network Topology Inference for Person Re-identification
In this paper, we propose a novel distance-based camera network topology inference method for efficient person re-identification. To this end, we first calibrate each camera and estimate relative scales between cameras. Using the calibration results of multiple cameras, we calculate the speed of each person and infer the distance between cameras to generate distance-based camera network topolog...
متن کاملJoint Learning for Attribute-Consistent Person Re-Identification
Person re-identification has recently attracted a lot of attention in the computer vision community. This is in part due to the challenging nature of matching people across cameras with different viewpoints and lighting conditions, as well as across human pose variations. The literature has since devised several approaches to tackle these challenges, but the vast majority of the work has been c...
متن کاملPerson Re-identification: Past, Present and Future
Person re-identification (re-ID) has become increasingly popular in the community due to its application and research significance. It aims at spotting a person of interest in other cameras. In the early days, hand-crafted algorithms and small-scale evaluation were predominantly reported. Recent years have witnessed the emergence of large-scale datasets and deep learning systems which make use ...
متن کاملBi-level Relative Information Analysis for Multiple-Shot Person Re-Identification
Multiple-shot person re-identification, which is valuable for application in visual surveillance, tackles the problem of building the correspondence between images of the same person from different cameras. It is challenging because of the large within-class variations due to the changeable body appearance and environment and the small between-class differences arising from the possibly similar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 47 شماره
صفحات -
تاریخ انتشار 2014